728x90 반응형 분류 전체보기365 [Python(AI)] Python 개발자를 위한 GPU 가속 : nvmath-python과 cuda.core 파이썬은 AI, 데이터 과학 분야에서 독보적인 언어지만, 복잡한 수치 연산을 빠르게 처리하는 데는 GPU(그래픽 처리 장치)의 도움이 필수적입니다. 과거에는 GPU를 활용하려면 C/C++ 바인딩이라는 복잡한 과정을 거쳐야 했지만, 이제 NVIDIA가 직접 제공하는 두 가지 강력한 라이브러리 nvmath-python 과 cuda.core 덕분에 파이썬으로도 GPU의 성능을 100% 활용할 수 있게 되었습니다. 개요 : 두 라이브러리의 역할 분담NVIDIA는 CUDA Python 이라는 메타 패키지를 통해 파이썬에서 CUDA 플랫폼에 접근할 수 있는 여러 컴포넌트를 제공합니다. nvmath-python 과 cuda-core는 이 중 핵심 역할을 담당합니다.nvmath-python : 고도로 최적화된 수학 함.. 2025. 10. 10. [NVIDIA] NumPy의 한계를 넘어, GPU 가속의 힘 CuPy 완벽 가이드 파이썬으로 대규모 과학 계산이나 데이터 처리를 할 때 NumPy는 필수 라이브러리입니다. 하지만 데이터의 크기가 기하급수적으로 늘어날 수록 CPU만으로는 처리 속도의 한계에 부딪히게 됩니다. 이럴 때 필요한 것이 바로 CuPy입니다. CuPy는 NumPy와 거의 동일한 문법을 사용하면서도 코드를 GPU에서 실행하여 데이터 처리 속도를 극적으로 가속하는 혁신적인 라이브러리입니다.주제 개념 및 용어 정리용어실제 단어 뜻 CuPy에서의 의미NumPyNumerical Python의 합성어. 파이썬에서 대규모 다차원 배열을 다루고 행렬 및 벡터 연산을 수행하는 데 사용하는 핵심 라이브러리입니다. 모든 연산은 CPU에서 이루어집니다.CuPy가 지향하는 문법 및 기능의 표준이자, CuPy가 가속화를 제공하는 대상입니.. 2025. 10. 9. [데이터 시각화] HOG란 무엇인가? 객체 검출의 고전적인 역작, HOG 완전 분석 컴퓨터 비전 분야의 딥러닝 시대가 도래하기 전, Histogram of Oriented Gradients(HOG, 기울기 방향 히스토그램)는 객체 검출(Object Detection) 영역에서 가장 강력하고 혁신적인 특징 서술자(Feature Descriptor) 중 하나였습니다. 특히 사람 검출(Pedestrian Detection) 분야에 혁명을 가져왔던 HOG 원리와 작동 방식을 자세히 알아봅시다. HOG 기반 : 이미지 기울기 벡터(Gradient Vector)HOG가 작동하는 원리는 매우 직관적입니다. 객체의 모양(Shape)은 주로 윤곽선(Edge)에 의해 결정되며, 윤곽선은 픽셀 밝기가 급격하게 변하는 곳에서 발생합니다. 이미지 픽셀 위치 $f(x,y)$에 따른 밝기 값으로 이루어진 함수로 .. 2025. 10. 7. [데이터 시각화] 픽셀을 조각하다: 대비, 휘도, 노이즈 필터링으로 이미지 마스터하기 2025.10.01 - [AI/데이터 시각화] - [데이터 시각화] 픽셀을 해부하다: 파이썬으로 배우는 이미지의 다차원 구조 (Part 1) 이전에 이미지를 NumPy 배열로 다루고 기본적인 슬라이싱을 통해 채널을 분리하는 방법을 배웠습니다. 이번에는 더 흥미로운 이미지 처리 기법인 밝기/대비 조절과 노이즈 필터링을 구현해 보겠습니다.1. 밝기 조절 : 클리핑이 핵심픽셀 밝기는 RGB 구성요소 값에 비례합니다. (0 : 빛 없음, 255 : 최대 밝기) 밝기를 조절할 때는 값이 범위를 벗어나지 않도록 주의해야합니다.예를 들어 G = 200 인 픽셀의 밝기를 두 배로 늘리면 G = 400이 되는데, 최대값인 255를 초과하므로 이 값을 255로 클리핑(Clipping) 해야합니다. # NumPy의 cli.. 2025. 10. 6. [데이터 시각화] 픽셀을 해부하다: 파이썬으로 배우는 이미지의 다차원 구조 (Part 1) 개요데이터 과학자나 개발자에게 이미지는 단순히 보는 것을 넘어 분석하고 조작해야 할 다차원 데이터 구조입니다. 이번 글에서는 간단한 Python 라이브러리인 NumPy와 Matplotlib을 이용해 이미지를 데이터 관점에서 해부하고 기본적인 조작을 해보겠습니다. 1. 이미지 NumPy 배열로 바꾸기우리는 Jupyter Notebook 환경에서 작업을 시작합니다. 이미지를 데이터로 다루기 위한 필수 라이브러리들을 볼러옵니다.아래 간단한 코드를 통해 JPG 파일이 메모리에서 NumPy 배열(행렬)로 변환됩니다.import numpy as npimport matplotlib.pyplot as pltimport matplotlib.image as Image# 이미지를 불러와 NumPy 배열로 변환img = Im.. 2025. 10. 5. [Python] 튜플(Tuple) & 딕셔너리(Dictionary) 개요파이썬에는 다양한 자료구조가 있습니다. 그중에서도 튜플(Tuple)과 딕셔너리(Dictionary)는 실무에서 자주 사용되는 핵심 자료형입니다. 이 둘의 특징과 활용법을 제대로 이해하고 사용하면 코드를 더 효율적으로 작성할 수 있습니다. 지금부터 튜플과 딕셔너리의 정의, 사용 이유, 그리고 실제 활용 예시까지 함께 살펴보겠습니다.튜플(Tuple)튜플의 정의튜플은 여러 개의 데이터를 순서대로 나열하는 자료형입니다. 괄호()를 사용하여 데이터를 묶습니다. 리스트와 비슷하지만, 가장 큰 차이점은 불변성(Immutable)에 있습니다. 한 번 생성된 튜플은 요소를 수정, 추가, 삭제할 수 없습니다. 튜플의 각 요소는 고유한 위치인 인덱스를 통해 접근할 수 있습니다.튜플을 사용하는 이유데이터의 안전성 보장 :.. 2025. 10. 4. 이전 1 2 3 4 5 6 7 ··· 61 다음 728x90 반응형