728x90 반응형 파인튜닝2 [인공지능] ResNet 전이 학습 : 에포크 설정이 성능에 미치는 영향 분석 딥러닝 모델을 활용한 이미지 분류 프로젝트에서 전이 학습(Transfer Learning)은 필수적인 기법입니다. 특히 ImageNet으로 사전 훈련된 ResNet 모델을 새로운 데이터셋에 적용할 때, 학습의 효율성과 최종 성능을 결정하는 핵심 요소 중 하나가 바로 에포크(Epoch) 설정입니다. 이번 글에서는 전이 학습의 2단계 전략에서 에포크를 다르게 설정했을 때 어떤 결과가 예측되는지 분석하고, 안정적으로 높은 성능을 얻기 위한 최적의 전략을 제시합니다. 전이 학습의 2단계 전략 효율적인 ResNet 기반 전이 학습은 일반적으로 두 단계로 나뉩니다. 특징 추출(Feature Extraction)목표 : 사전 훈련된 ResNet Base Model은 동결하고, 새로 추가된 최종 분류기(Classifi.. 2025. 11. 2. [인공지능] 전이 학습(Transfer Learning) 완벽 가이드: CNN 기반 Fine-tuning 및 Feature Extraction 분석 전이 학습(Transfer Learning)에 대해 깊이 있게 알아보겠습니다. 특히 이미지 인식 분야에서 강력한 성능을 자랑하는 CNN(Convolution Neural Network)을 기반으로 전이 학습의 다양한 전략을 코드와 함께 분석해 보겠습니다. 전이 학습이란?전이 학습은 사전에 훈련된 모델이 갖고 있는 지식(가중치)을 그대로 가져와 새로운 문제에 적용함으로써 학습 시간을 단축하고 성능을 향상 시키는 머신러닝 기법입니다. 사용 이유 : 대규모 데이터셋(ImageNet)으로 학습된 모델의 광범위한 특징 추출 능력을 활용하여, 더 적은 데이터와 시간으로도 새로운 문제에 대해 높은 성능을 달성하기 위함입니다. CNN과의 관계 : CNN은 여러 층을 거치며 저수준(예지, 텍스처)부터 고수준(형태, 객체.. 2025. 10. 31. 이전 1 다음 728x90 반응형